ENERGIA POTENCIAL
La energía potencial es el tipo de energía mecánica asociada a la posición o configuración de un objeto. Podemos pensar en la energía potencial como la energía almacenada en el objeto debido a su posición y que se puede transformar en energía cinética o trabajo. El concepto energía potencial, U, se asocia con las llamadas fuerzas conservadoras. Cuando una fuerza conservadora, como la fuerza de gravedad, actúa en un sistema u objeto; la energía cinética ganada (o perdida) por el sistema es compensada por una perdida (o ganancia) de una cantidad igual de energía potencial. Esto ocurre según los elementos del sistema u objeto cambia de posición.
Una fuerza es conservadora si el trabajo realizado por ésta en un objeto es independiente de la ruta que sigue el objeto en su desplazamiento entre dos puntos. Otras fuerzas conservadoras son: la fuerza electrostática y la fuerza de restauración de un resorte.
Considera una pelota cayendo. La fuerza de gravedad realiza trabajo en la pelota. Como la dirección de la fuerza de gravedad es dirección del desplazamiento de la pelota, el trabajo realizado por la gravedad es positivo. El que el trabajo sea positivo significa que la energía cinética aumentará según la pelota cae. Es decir, la velocidad de la pelota aumentará.
Según la energía cinética aumenta, la ganancia debe ser compensada por una perdida de una cantidad igual en energía potencial. Es decir, según la pelota cae, la energía cinética aumenta mientras que la energía potencial disminuye.
Se define la energía potencial como:
U = mgh
Donde m es la masa del objeto, g es la aceleración de gravedad y h es la altura del objeto. Así que según la pelota cae, su energía potencial disminuye por virtud de la reducción en la altura.
Podemos definir la energía total de la pelotaa como la suma de la energía cinética y la potencial.
ET = K + U
Como la energía permanece constante, entonces la energía total inicial es igual a la energía total final.
ETi = ETf
Por lo que entonces la suma de la energía cinética inicial y la potencial inicial debe ser igual a la suma de la energía cinética final y la energía potencial final.
Ki + Ui = Kf + Uf
o sea
½ mvi² + mghi = ½ mvf² + mghf
Considera un ciclista que intenta subir una cuesta sólo con el impulso. Según el ciclista sube la cuesta, su velocidad irá disminuyendo, por lo que la energía cinética disminuirá. La razón es que el trabajo realizado por la fuerza de gravedad en este caso es negativo debido a que el desplazamiento es hacia la parte alta del plano, mientras que el componente de la fuerza de gravedad que actúa en el ciclista es hacia la parte baja del plano. Esta pérdida en energía cinética se compensa con un aumento en la energía potencial. La altura aumentará hasta alcanzar aquella altura que le da una energía potencial igual a la energía cinética del ciclista justo antes de comenzar a subir la cuesta. Mientras más rápido vaya el ciclista al momento de comenzar a subir la cuesta, más alto subirá.
En aplicaciones reales, este principio de transformación de energía cinética en energía potencial puede verse afectado por la fuerza de fricción que ayuda a disipar energía en forma de calor.
MASA
La masa, en física, es una medida de la cantidad de materia que posee un cuerpo. Es una propiedad intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional. La unidad utilizada para medir la masa en el Sistema Internacional de Unidades es el kilogramo (kg).
Masa inercial:
La masa inercial para la física clásica viene determinada por la Segunda y Tercera Ley de Newton. Dados dos cuerpos, A y B, con masas inerciales mA (conocida) y mB (que se desea determinar), en la hipótesis dice que las masas son constantes y que ambos cuerpos están aislados de otras influencias físicas, de forma que la única fuerza presente sobre A es la que ejerce B, denominada FAB, y la única fuerza presente sobre B es la que ejerce A, denominada FBA, de acuerdo con la Segunda Ley de Newton:.
La Tercera Ley de Newton afirma que las dos fuerzas son iguales y opuestas:
.
Considérense dos cuerpos A y B con masas gravitacionales MA y MB, separados por una distancia |rAB|. La Ley de la Gravitación de Newton dice que la magnitud de la fuerza gravitatoria que cada cuerpo ejerce sobre el otro es
.
Esta es la base según la cual las masas se determinan en las balanzas. En las balanzas de baño, por ejemplo, la fuerza |F| es proporcional al desplazamiento del muelle debajo de la plataforma de pesado (véase Ley de Hooke), y la escala está calibrada para tener en cuenta g de forma que se pueda leer la masa M.
SOLIDOS
SOLIDOS
Un cuerpo sólido, es uno de los cuatro estados de agregación de la materia, se caracteriza porque opone resistencia a cambios de forma y de volumen. Las moléculas de un sólido tienen una gran cohesión y adoptan formas bien definidas.
CARACTERÍSTICAS DE LOS SÓLIDOS
• Tienen forma y volumen propio.
• No fluyen
• Son prácticamente incomprensibles.
• Tienen altas densidades
• Manteniendo constante la presión y baja la temperatura, los cuerpos se presentan en forma sólida y encontrándose entrelazados formando generalmente estructuras cristalinas.
• Sus estructuras cristalinas confieren al cuerpo la capacidad de soportar fuerzas sin deformación aparente y, por tanto, son agregados generalmente rígidos, incompresibles (que no pueden ser comprimidos), duros y resistentes.
• No se difunden, ya que no pueden desplazarse.
• Puede ser orgánico o inorgánico.
• El sólido más ligero conocido es un material artificial, el aerogel, que tiene una densidad de 1,9 mg/cm³.
CARACTERÍSTICAS DE LOS SÓLIDOS
• Tienen forma y volumen propio.
• No fluyen
• Son prácticamente incomprensibles.
• Tienen altas densidades
• Manteniendo constante la presión y baja la temperatura, los cuerpos se presentan en forma sólida y encontrándose entrelazados formando generalmente estructuras cristalinas.
• Sus estructuras cristalinas confieren al cuerpo la capacidad de soportar fuerzas sin deformación aparente y, por tanto, son agregados generalmente rígidos, incompresibles (que no pueden ser comprimidos), duros y resistentes.
• No se difunden, ya que no pueden desplazarse.
• Puede ser orgánico o inorgánico.
• El sólido más ligero conocido es un material artificial, el aerogel, que tiene una densidad de 1,9 mg/cm³.
El sólido más denso es un metal, el osmio (Os), que tiene una densidad de 22,6 g/cm³. Las moléculas de un sólido tienen una gran cohesión y adoptan formas bien definidas.
Existen varias disciplinas que estudian los sólidos:
• La física del estado sólido estudia cómo emergen las propiedades físicas de los sólidos a partir de su estructura de la materia condensada.
• La mecánica de sólidos deformables estudia propiedades macroscópicas desde la perspectiva de la mecánica de medios continuos (tensión, deformación, magnitudes termodinámicas, &c.).
Existen varias disciplinas que estudian los sólidos:
• La física del estado sólido estudia cómo emergen las propiedades físicas de los sólidos a partir de su estructura de la materia condensada.
• La mecánica de sólidos deformables estudia propiedades macroscópicas desde la perspectiva de la mecánica de medios continuos (tensión, deformación, magnitudes termodinámicas, &c.).
ELASTICIDAD

Es la propiedad que tienen los objetos para cambiar de forma. El estiramiento es directamente proporcional a la fuerza aplicada. Esta relación fue considerada por Robert Hooke. Si se estira o se comprime demasiado un material elástico, más allá de cierta cantidad entonces el objeto no regresará a su estado normal. Cuando hay una distorsión permanente, se llama límite elástico. La Ley de Hooke solamente aplica a casos donde la fuerza aplicada no estire o comprima el material más allá de su límite elástico.
Cuando se estira o tira de algo se dice que el objeto está en tensión. Cuando se aprieta se dice que se comprime o está bajo compresión,
FLUIDO
Se denomina fluido a un tipo de medio continuo formado por alguna sustancia entre cuyas moléculas hay una fuerza de atracción débil. Los fluidos se caracterizan por cambiar de forma sin que existan fuerzas restitutivas tendentes a recuperar la forma "original" (lo cual constituye la principal diferencia con un sólido deformable). Un fluido es un conjunto de partículas que se mantienen unidas entre si por fuerzas cohesivas débiles y/o las paredes de un recipiente; el término engloba a los líquidos y los gases. En el cambio de forma de un fluido la posición que toman sus moléculas varía, ante una fuerza aplicada sobre ellos, pues justamente fluyen. Los líquidos toman la forma del recipiente que los aloja, manteniendo su propio volumen, mientras que los gases carecen tanto de volumen como de forma propios. Las moléculas no cohesionadas se deslizan en los líquidos, y se mueven con libertad en los gases. Los fluidos están conformados por los líquidos y los gases, siendo los segundos mucho menos viscosos (casi fluidos ideales).
O también en:
DENCIDAD
La densidad es una medida utilizada por la física y la química para determinar
la cantidad de masa contenida en un determinado volumen. La ciencia establece
dos tipos de densidades. La densidad absoluta o real que mide la masa por unidad
de volumen, y es la que generalmente se entiende por densidad. Se calcula con la
siguiente formula:
Densidad = masa / volumen.
1. ¿Cuál es la densidad de un material, si 30 cm cúbicos tiene una masa de 600 gr?
Solución:
Sabemos que
De los datos del problema sabemos que:
m = 600 gr.
V = 30 cm3
Entonces reemplazando en la formula:
ρ = m / V
ρ = 600 gr / 30 cm3
ρ = 20 gr / cm3.
PESO ESPESIFICO
ᵧ=w/v
Relación entre el peso y el volumen
ᵧ=mg/v
Relación entre la densidad y el peso especifico.
ᵨ= ᵧ/g
Relación entre la densidad y el peso especifico.
ᵧ=ᵨg
EJEMPLO:
Resultado de despejar peso especifico en la expresión anterior.
Ahora ejemplificaremos algunas situaciones en donde se utilicen estos tipos de relaciones.
José se dirige hacia la gasolinera y de momento recuerda que cuando el era estudiante le enseñaron a realizar diversos cuestionamientos con respecto del entorno y se hizo el siguiente cuestionamiento;
Si comprara 15000 litros de gasolina con una densidad de 700 kg/m3
¿Cuál sería la masa y el peso específico de estos?
Ayudemos a José.
ᵨ=700kg/m3
Conversión;
Si tenemos que el volumen lo necesitamos en m3 entonces pasemos de litros a esa unidad.
Equivalencia 1m3 = 1000lt, por lo tanto 15000 litros son iguales o equivalentes a 15m3.
Ya teniendo en orden nuestros datos pasemos a buscar la fórmula a utilizar dependiendo de los datos que nos dan.
Quiero calcular peso especifico y solo tengo la densidad por lo tanto usaremos una fórmula que contenga un dato conocido de manera general.
ᵧ=ᵨg
Asi que ahora solo sustituimos los valores para llegar a la primera incógnita.
ᵧ= (700kg/m3)( 9.81 m/s2)
ᵧ=6867 N/m3
Solo falta sacar la masa.
ᵨ=m/v
m= ᵨv
Solo falta sacar la masa.
ᵨ=m/v
m= ᵨv
m=(700kg/m3)(15m3)
m=10500 kg
V=1500 litros
PRESION
La presión (símbolo p) es una magnitud física que mide como la proyección de la fuerza en dirección perpendicular por unidad de superficie (esa magnitud es escalar), y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una linea. En el Sistema Internacional la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton actuando uniformemente en un metro cuadrado. En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.La presión es la magnitud vectorial que relaciona la fuerza con la superficie sobre la cual actúa, es decir,equivale a la fuerza que actúa sobre la superficie.
Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme, la presión P viene dada de la siguiente forma:
En un caso general donde la fuerza puede tener cualquier dirección y no estar distribuida uniformemente en cada punto la presión se define como:
Donde

donde:
, es la fuerza por unidad de superficie.
, es el vector normal a la superficie.
, es el área total de la superficie S.
LIQUIDOS
Su forma es esférica si sobre él no actúa ninguna fuerza externa. Por ejemplo, una gota de agua en caída libre toma la forma esférica.
Como fluido sujeto a la fuerza de la gravedad, la forma de un líquido queda definida por su contenedor. En un líquido en reposo sujeto a la gravedad en cualquier punto de su seno existe una presión de igual magnitud hacia todos los lados, tal como establece el principio de Pascal. Si un líquido se encuentra en reposo, la presión hidrostática en cualquier punto del mismo viene dada por:
Donde



Viscosidad: Los líquidos se caracterizan porque las fuerzas internas en un líquido no dependen de la deformación total, aunque usual sí dependen de la velocidad de deformación, esto es lo que diferencia a los sólidos deformables de los líquidos.
Fluidez:La fluidez es una característica de los líquidos y/o gases que les confiere la habilidad de poder pasar por cualquier orificio o agujero por más pequeño que sea, siempre que esté a un mismo o inferior nivel del recipiente en el que se encuentren (el líquido ), a diferencia del restante estado de agregación conocido como sólido.
Presión de vapor:Presión de un vapor en equilibrio con su forma líquida, la llamada presión de vapor, sólo depende de la temperatura; su valor a una temperatura dada es una propiedad característica de todos los líquidos.
EMPUJE
El empuje es una fuerza de reacción descrita cuantitativamente por la tercera ley de Newton. Cuando un sistema expele o acelera masa en una dirección (acción), la masa acelerada causará una fuerza igual en dirección contraria (reacción). Matemáticamente esto significa que la fuerza total experimentada por un sistema se acelera con una masa m que es igual y opuesto a m veces la aceleración a, experimentada por la masa:Ejemplos;
Un avión genera empuje hacia adelante cuando la hélice que gira, empuja el aire o expulsa los gases expansivos del reactor, hacia atrás del avión. El empuje hacia adelante es proporcional a la masa del aire multiplicada por la velocidad media del flujo de aire.
Similarmente, un barco genera empuje hacia adelante (o hacia atrás) cuando la hélice empuja agua hacia atrás (o hacia adelante). El empuje resultante empuja al barco en dirección contraria a la suma del cambio de momento del agua que fluye a través de la hélice.
Un cohete (y toda la masa unida a él) es propulsado hacia adelante por un empuje igual y en dirección opuesta a la masa multiplicada por su velocidad respecto al cohete.
VOLUMEN
En física, el volumen es una magnitud física extensiva que es asociada a la propiedad de los cuerpos físicos de ser extensos o materiales.La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico, aunque temporalmente también acepta el litro (que equivale a un decímetro cúbico), el que se utiliza comúnmente en la vida práctica.
Unidades de volumen
Se clasifican de la siguiente manera en tres categorías:- Unidades de volumen sólido: Miden al volumen de un cuerpo utilizando unidades de longitud elevadas a la tercera potencia. Se le dice volumen sólido porque en geometría se utiliza para medir el espacio que ocupan los cuerpos tridimensionales, y se da por hecho que el interior de esos cuerpos no es hueco sino que es sólido.
- Unidades de volumen líquido. Estas unidades fueron creadas para medir el volumen que ocupan los líquidos dentro de un recipiente.
- Unidades de volumen de áridos, también llamadas tradicionalmente unidades de capacidad. Estas unidades fueron creadas para medir el volumen que ocupan las cosechas (legumbres, tubérculos, forrajes y frutas) almacenadas en graneros y silos. Estas unidades fueron creadas porque hace muchos años no existía un método adecuado para pesar todas las cosechas en un tiempo breve, y era más práctico hacerlo usando volúmenes áridos. Actualmente estas unidades son poco utilizadas porque ya existe tecnología para pesar la cosecha en tiempo breve.
GASTO
Gasto: cantidad o volumen de fluido que pasa a través de un conducto, y el tiempo que tarda en fluir, puede calcularse también si se considera la velocidad que lleva el líquido y se conoce el área de la sección transversal de la tubería.
Flujo: es la cantidad de masa del fluido que fluye a través de una tubería en un segundo,También se define como la densidad de un cuerpo, es la relación que existe entre la masa y el volumen.
muy bien arbe, que bueno que incluiste el tema anterior que casi nadie subió, las imágenes están bien explicada conforme a la teoría y los vídeos también despejan muchas dudas, saludos!!
ResponderEliminarla informacion es muy interesante
ResponderEliminary los videos son de mucha ayuda
si la teoria esta bien explicada pero como son pocas formulas tendremos que hacer unos despejes y entanto a los videos si dejan dudas pero para poder enterder mas sobre cada uno de los temas tendermos que hacer varios ejercicios. no cren?
ResponderEliminarMuy bn arbe....esoos videos estan interesantes...!
ResponderEliminar